Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth

靶向肿瘤相关内皮细胞:抗 VEGFR2 免疫脂质体介导肿瘤血管破坏并抑制肿瘤生长

阅读:12
作者:Andreas Wicki, Christoph Rochlitz, Annette Orleth, Reto Ritschard, Imke Albrecht, Richard Herrmann, Gerhard Christofori, Christoph Mamot

Conclusions

Anti-VEGFR2 ILs provide a highly efficient approach to selectively deplete VEGFR2-expressing tumor vasculature. They offer a novel and promising anticancer strategy.

Purpose

Angiogenesis is a key process in tumor progression. By binding VEGF, VEGF receptor-2 (VEGFR2) is a main signaling transducer in tumor-associated angiogenesis. Accordingly, therapeutic approaches against the VEGF/VEGFR2 signaling axis have been designed. However, an efficient and specific chemotherapeutic targeting of tumor-associated endothelial cells has not yet been achieved. Experimental design: We have employed anti-VEGFR2 antibodies covalently linked to pegylated liposomal doxorubicin (PLD) to specifically ablate tumor-associated endothelial cells in the Rip1Tag2 mouse model of insulinoma, in the MMTV-PyMT mouse model of breast cancer, and in the HT-29 human colon cancer xenograft transplantation model.

Results

In each model, anti-VEGFR2-targeted immunoliposomes (ILs) loaded with doxorubicin (anti-VEGFR2-ILs-dox) were superior in therapeutic efficacy to empty liposomes, empty anti-VEGFR2-ILs, antibodies alone, and PLD. Efficacy was similar to that of the oral VEGFR1, -2, and -3 inhibitor PTK787. Detailed histopathologic and molecular analysis revealed a strong antiangiogenic effect of anti-VEGFR2-ILs-dox, and the observed antiangiogenic therapy was significantly more efficient in reducing tumor burden in well-vascularized transgenic mouse models as compared with the less-vascularized xenograft model. Conclusions: Anti-VEGFR2 ILs provide a highly efficient approach to selectively deplete VEGFR2-expressing tumor vasculature. They offer a novel and promising anticancer strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。