Inhibition of the Adenosine A2A Receptor Mitigates Excitotoxic Injury in Organotypic Tissue Cultures of the Rat Cochlea

抑制腺苷 A2A 受体可减轻大鼠耳蜗器官型组织培养中的兴奋毒性损伤

阅读:6
作者:Belinda Rx Han, Shelly Cy Lin, Kristan Espinosa, Peter R Thorne, Srdjan M Vlajkovic

Abstract

The primary loss of cochlear glutamatergic afferent nerve synapses due to noise or ageing (cochlear neuropathy) often presents as difficulties in speech discrimination in noisy conditions (hidden hearing loss (HHL)). Currently, there is no treatment for this condition. Our previous studies in mice with genetic deletion of the adenosine A2A receptor (A2AR) have demonstrated better preservation of cochlear afferent synapses and spiral ganglion neurons after noise exposure compared to wildtype mice. This has informed our current targeted approach to cochlear neuroprotection based on pharmacological inhibition of the A2AR. Here, we have used organotypic tissue culture of the Wistar rat cochlea at postnatal day 6 (P6) to model excitotoxic injury induced by N-methyl-d-aspartate (NMDA)/kainic acid (NK) treatment for 2 h. The excitotoxic injury was characterised by a reduction in the density of neural processes immediately after NK treatment and loss of afferent synapses in the presence of intact sensory hair cells. The administration of istradefylline (a clinically approved A2AR antagonist) reduced deafferentation of inner hair cells and improved the survival of afferent synapses after excitotoxic injury. This study thus provides evidence that A2AR inhibition promotes cochlear recovery from excitotoxic injury, and may have implications for the treatment of cochlear neuropathy and prevention of HHL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。