Enoxacin Shows Broad-Spectrum Antiviral Activity against Diverse Viruses by Enhancing Antiviral RNA Interference in Insects

依诺沙星通过增强昆虫的抗病毒 RNA 干扰表现出针对多种病毒的广谱抗病毒活性

阅读:6
作者:Bao Lyu, Chang Wang, Yuanyuan Bie, Jing Kong, An Wang, Liang Jin, Yang Qiu, Xi Zhou

Abstract

RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we show that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived small interfering RNA (siRNA) into the RNA-induced silencing complex, thereby enhancing the antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited the replication of flaviviruses, including dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrate that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control the vector transmission of arboviruses or viral diseases in insect farming. IMPORTANCE RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanisms in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that was previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Here, we show that enoxacin treatment inhibited viral replication of DCV and CrPV in Drosophila cells and adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into the Ago2-incorporated RNA-induced silencing complex and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin displayed effective RNAi-dependent antiviral effects against flaviviruses, such as dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral effects against diverse viruses in insects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。