A protein switch sensing system for the quantification of sulfate

用于硫酸盐定量的蛋白质开关传感系统

阅读:5
作者:Krystal Teasley Hamorsky, Charles Mark Ensor, Patrizia Pasini, Sylvia Daunert

Abstract

Protein engineering has generated versatile methods and technologies that have been instrumental in advancements in the fields of sensing, therapeutics, and diagnostics. Herein, we demonstrate the employment of rational design to engineer a unique bioluminescence-based protein switch. A fusion protein switch combines two totally unrelated proteins, with distinct characteristics, in a manner such that the function of one protein is dependent on another. Herein we report a protein switch sensing system by insertion of the sulfate-binding protein (SBP) into the structure of the photoprotein aequorin (AEQ). In the presence of sulfate, SBP undergoes a conformational change bringing the two segments of AEQ together, "turning on" bioluminescence in a dose-dependent fashion, thus allowing quantitative detection of sulfate. A calibration plot was obtained by correlating the amount of bioluminescence generated with the concentration of sulfate present. The switch demonstrated selectivity and reproducibility, and a detection limit of 1.6×10(-4)M for sulfate. Moreover, the sensing system was validated by performing sulfate detection in clinical and environmental samples, such as, serum, urine, and tap water. The detection limits and working ranges in all three samples fall within the average normal/recommended sulfate levels in the respective matrices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。