Suberoylanilide hydroxamic acid overcomes erlotinib-acquired resistance via phosphatase and tensin homolog deleted on chromosome 10-mediated apoptosis in non-small cell lung cancer

辛二酰苯胺异羟肟酸通过 10 号染色体上缺失的磷酸酶和张力蛋白同源物介导非小细胞肺癌细胞凋亡克服厄洛替尼获得性耐药性

阅读:5
作者:Peng-Fei Wu, Wei-Wei Gao, Cui-Lan Sun, Tai Ma, Ji-Qing Hao

Background

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib, are widely used to treat non-small cell lung cancer (NSCLC). However, acquired resistance is unavoidable, impairing the anti-tumor effects of EGFR-TKIs. It is reported that histone deacetylase (HDAC) inhibitors could enhance the anti-tumor effects of other antineoplastic agents and radiotherapy. However, whether the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can overcome erlotinib-acquired resistance is not fully clear.

Conclusions

PTEN deletion is closely related to acquired resistance to EGFR-TKIs, and treatment with the combination of SAHA and erlotinib showed a greater inhibitory effect on NSCLC cells than single-drug therapy. SAHA enhances the suppressive effects of erlotinib in lung cancer cells, increasing cellular apoptosis and PTEN expression. SAHA can be a potential adjuvant to erlotinib treatment, and thus, can improve the efficacy of NSCLC therapy.

Methods

An erlotinib-resistant PC-9/ER cell line was established through cell maintenance in a series of erlotinib-containing cultures. NSCLC cells were co-cultured with SAHA, erlotinib, or their combination, and then the viability of cells was measured by the 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and apoptosis was determined by flow cytometry and western blotting. Finally, the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was assessed by western blotting.

Results

The half-maximal inhibitory concentration of parental PC-9 cells was significantly lower than the established erlotinib-acquired resistant PC-9/ER cell line. PC-9/ER cells demonstrated reduced expression of PTEN compared with PC-9 and H1975 cells, and the combination of SAHA and erlotinib significantly inhibited cell growth and increased apoptosis in both PC-9/ER and H1975 cells. Furthermore, treating PC-9/ER cells with SAHA or SAHA combined with erlotinib significantly upregulated the expression of PTEN mRNA and protein compared with erlotinib treatment alone. Conclusions: PTEN deletion is closely related to acquired resistance to EGFR-TKIs, and treatment with the combination of SAHA and erlotinib showed a greater inhibitory effect on NSCLC cells than single-drug therapy. SAHA enhances the suppressive effects of erlotinib in lung cancer cells, increasing cellular apoptosis and PTEN expression. SAHA can be a potential adjuvant to erlotinib treatment, and thus, can improve the efficacy of NSCLC therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。