The small molecule SERCA activator CDN1163 increases energy metabolism in human skeletal muscle cells

小分子 SERCA 激活剂 CDN1163 可增加人类骨骼肌细胞的能量代谢

阅读:7
作者:Abel M Mengeste, Jenny Lund, Parmeshwar Katare, Roya Ghobadi, Hege G Bakke, Per Kristian Lunde, Lars Eide, Gavin O' Mahony, Sven Göpel, Xiao-Rong Peng, Eili Tranheim Kase, G Hege Thoresen, Arild C Rustan

Conclusion

Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus.

Methods

In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively.

Objective

A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes).

Results

Both acute (4 ​h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid β-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。