Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus

妊娠期和新生儿缺铁会抑制大鼠海马中的 IGF 信号传导,而铁治疗可重新激活该信号传导

阅读:5
作者:Phu V Tran, Stephanie J B Fretham, Jane Wobken, Bradley S Miller, Michael K Georgieff

Abstract

Gestational-neonatal iron deficiency, a common micronutrient deficiency affecting the offspring of more than 30% of pregnancies worldwide, leads to long-term cognitive and behavioral abnormalities. Preclinical models of gestational-neonatal iron deficiency result in reduced energy metabolism and expression of genes critical for neuronal plasticity and cognitive function, which are associated with a smaller hippocampal volume and abnormal neuronal dendrite growth. Because insulin-like growth factor (IGF) modulates early postnatal cellular growth, differentiation, and survival, we used a dietary-induced rat model to assess the effects of gestational iron deficiency on activity of the IGF system. We hypothesized that gestational iron deficiency attenuates postnatal hippocampal IGF signaling and results in downstream effects that contribute to hippocampal anatomic and functional deficits. At postnatal day (P) 15 untreated gestational-neonatal iron deficiency markedly suppressed hippocampal IGF activation and protein kinase B signaling, and reduced neurogenesis, while elevating extracellular signal-regulated kinase 1/2 signaling and hypoxia-inducible factor-1α expression. Iron treatment beginning at P7 restored IGF signaling, increased neurogenesis, and normalized all parameters by the end of rapid hippocampal differentiation (P30). Expression of the neuron-specific synaptogenesis marker, disc-large homolog 4 (PSD95), increased more rapidly than the glia-specific myelination marker, myelin basic protein, following iron treatment, suggesting a more robust response to iron therapy in IGF-I-dependent neurons than IGF-II-dependent glia. Collectively, our findings suggest that IGF dysfunction is in part responsible for hippocampal abnormalities in untreated iron deficiency. Early postnatal iron treatment of gestational iron deficiency reactivates the IGF system and promotes neurogenesis and differentiation in the hippocampus during a critical developmental period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。