Modeling the transcriptional consequences of epidermal growth factor receptor ablation in Ras-initiated squamous cancer

模拟表皮生长因子受体消融对 Ras 引发的鳞状细胞癌的转录影响

阅读:4
作者:Lisa Nolan Wright, Andrew Ryscavage, Glenn Merlino, Stuart H Yuspa

Conclusion

These findings reveal unrecognized interactions between Ras and EGFR signaling in squamous tumor cells that could influence the therapeutic response to EGFR ablation therapy.

Purpose

Epidermal growth factor receptor (EGFR)-targeted therapy is in clinical use to treat squamous cell carcinoma of the head and neck and other cancers of lining epithelium. RAS mutations in these tumors are a negative prognostic factor for response, and skin inflammation is an adverse reaction to therapy. We investigated transcriptional and biochemical changes that could account for the confounding effects of RAS activation and inflammation in a squamous tissue. Experimental design: We carried out gene expression profiling on oncogenic Ras-transformed and wild-type mouse and human keratinocytes with EGFR ablated chronically by genetic deletion or acutely by drug treatment and followed leads provided by pathway analysis with biochemical studies.

Results

We identified a 25-gene signature specific to the Ras-EGFR ablation interaction and a distinct 19-gene EGFR ablation signature on normal keratinocytes. EGFR ablation in the context of wild-type Ras reduces ontologies favoring cell-cycle control and transcription, whereas oncogenic Ras enriches ontologies for ion channels and membrane transporters, particularly focused on calcium homeostasis. Ontologies between chronic EGFR ablation and acute pharmacologic ablation were unique, both with and without Ras activation. p38α is activated in response to abrogation of EGFR signaling under conditions of Ras activation in both mouse and human keratinocytes and in RAS-transformed tumor orthografts of EGFR-ablated mouse keratinocytes. EGFR ablation in the absence of oncogenic Ras revealed Erk and interleukin-1β-related pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。