Specification of murine ground state pluripotent stem cells to regional neuronal populations

小鼠基态多能干细胞对区域神经元群的分化

阅读:6
作者:Walaa F Alsanie, Jonathan C Niclis, Cameron P Hunt, Isabelle R De Luzy, Vanessa Penna, Christopher R Bye, Colin W Pouton, John Haynes, Jaber Firas, Lachlan H Thompson, Clare L Parish

Abstract

Pluripotent stem cells (PSCs) are a valuable tool for interrogating development, disease modelling, drug discovery and transplantation. Despite the burgeoned capability to fate restrict human PSCs to specific neural lineages, comparative protocols for mouse PSCs have not similarly advanced. Mouse protocols fail to recapitulate neural development, consequently yielding highly heterogeneous populations, yet mouse PSCs remain a valuable scientific tool as differentiation is rapid, cost effective and an extensive repertoire of transgenic lines provides an invaluable resource for understanding biology. Here we developed protocols for neural fate restriction of mouse PSCs, using knowledge of embryonic development and recent progress with human equivalents. These methodologies rely upon naïve ground-state PSCs temporarily transitioning through LIF-responsive stage prior to neural induction and rapid exposure to regional morphogens. Neural subtypes generated included those of the dorsal forebrain, ventral forebrain, ventral midbrain and hindbrain. This rapid specification, without feeder layers or embryoid-body formation, resulted in high proportions of correctly specified progenitors and neurons with robust reproducibility. These generated neural progenitors/neurons will provide a valuable resource to further understand development, as well disorders affecting specific neuronal subpopulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。