Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells

Notch-1抑制可降低骨髓间充质干细胞增殖并促进其成骨分化

阅读:6
作者:Ying He, Lijin Zou

Abstract

Low differentiation and high proliferation rates are critical factors affecting bone marrow mesenchymal stem cell (BMSC) tumorigenesis. The present study aimed to investigate the role of the Notch signaling pathway in BMSC proliferation and osteogenic differentiation. Mouse BMSCs were divided into control, vector, Notch1-small interfering (si)RNA, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups. The siRNA-Notch1, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups were treated with Notch1 siRNA and/or γ-secretase inhibitor. Following treatment, cell proliferation was evaluated using a Cell Counting Kit-8. Tumor-related factors, including transforming growth factor (TGF)-β1, c-Myc and p53, were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. BMSC osteogenic differentiation was induced and the cells were stained with alizarin red at 14 and 21 days. Alkaline phosphatase (AKP) activity was also evaluated. The siRNA-Notch1 and γ-secretase inhibitor both reduced BMSC proliferation and the expression of TGF-β1 and c-Myc and increased the expression of p53. Following the induction of osteogenesis and staining with alizarin red, the level of AKP was significantly higher in cells in the siRNA-Notch1 and γ-secretase inhibitor groups compared with that in the control group. It was found that Notch1 inhibition reduced proliferation and promoted the osteogenic differentiation of BMSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。