PTK6 regulates growth and survival of endocrine therapy-resistant ER+ breast cancer cells

PTK6 调节内分泌治疗耐药 ER+ 乳腺癌细胞的生长和存活

阅读:11
作者:Koichi Ito #, Sun Hee Park #, Igor Katsyv, Weijia Zhang, Carmine De Angelis, Rachel Schiff, Hanna Y Irie

Abstract

The non-receptor tyrosine kinase, PTK6/BRK, is highly expressed in multiple tumor types, including prostate, ovarian, and breast cancers, and regulates oncogenic phenotypes such as proliferation, migration, and survival. PTK6 inhibition also overcomes targeted therapy resistance of HER2+ breast cancer. Although PTK6 is highly expressed in ER+ Luminal breast cancers, the role of PTK6 in this subtype has not been elucidated. In this study, we investigated the functions of PTK6 in ER+ Luminal breast cancer cells, including those that are relatively resistant to estrogen deprivation or targeted endocrine therapies used in the treatment of ER+ cancers. Enhanced expression of PTK6 in ER+ breast cancer cells enhances growth of ER+ breast cancer cells, including tamoxifen-treated cells. Downregulation of PTK6 in ER+ breast cancer cells, including those resistant to tamoxifen, fulvestrant, and estrogen deprivation, induces apoptosis, as evidenced by increased levels of cleaved PARP, and an increase in the AnnexinV+ population. PTK6 downregulation impairs growth of these cells in 3D MatrigelTM cultures, and virtually abrogates primary tumor growth of both tamoxifen-sensitive and resistant MCF-7 xenografts. Finally, we show that p38 MAPK activation is critical for PTK6 downregulation-induced apoptosis, a mechanism that we previously reported for survival of HER2+ breast cancer cells, highlighting conserved mechanisms of survival regulation by PTK6 across breast cancer subtypes. In conclusion, our studies elucidate critical functions of PTK6 in ER+ Luminal breast cancers and support PTK6 as an attractive therapeutic target for ER+ breast cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。