Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles

通过膜挤出制备的细胞衍生纳米囊泡是天然细胞外囊泡的良好替代品

阅读:12
作者:Yi Wen, Qin Fu, Ashley Soliwoda, Sheng Zhang, Mingfeng Zheng, Wenjun Mao, Yuan Wan

Abstract

Extracellular vesicles (EV) as drug delivery nanocarriers are under intense investigation. Although clinical-grade EVs have been produced on a large-scale, low yield and high production costs of natural EVs (nEV) limit the relevant industrial translation. Recent studies show that mechanical extrusion of cells can generate nEV-like cell-derived nanovesicles (CNV) which can also be used as drug nanocarriers. Moreover, in comparison with nEVs, CNVs have similar physicochemical properties. Nevertheless, a comprehensive comparison of cargo between nEVs and CNVs has not been investigated yet. Therefore, the aim of this study is to profile and compare CNVs to nEVs. Our results show that no significant difference was found in size, morphology, and classical markers between nEVs and CNVs derived from MDA-MB-231 cells. Protein sequencing data reveals the similarity of membrane proteins between the two groups was ~71%, while it was ~21% when pertaining to total protein cargo. Notably, a high similarity of membrane proteins was also found between nEVs and CNVs derived from eight additional cancer cell lines. Moreover, analysis of the top 1000 small RNAs with RNA sequencing showed a ~65% similarity between the two groups. Altogether, we infer from the high similarity of membrane proteins and small RNA cargo that CNVs can be a good substitute for nEVs. In brief, our findings support previous studies with a notion that CNVs yield comparable performance with nEVs and could pave the way for clinical implementation of CNV-based therapeutics in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。