Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization

酸中毒通过 ZFAND5/SLC3A2 信号轴激活乳腺癌铁死亡并引发 M1 巨噬细胞极化

阅读:7
作者:Hanchu Xiong, Yanan Zhai, Yimei Meng, Zhuazhua Wu, Anchen Qiu, Yu Cai, Geyi Wang, Liu Yang

Abstract

Acidosis is involved in multiple pathways in tumor cells and immune cells among the tumor microenvironment (TME). Ferroptosis is a nonapoptotic and iron-dependent form of cell death characterized by accumulation of lipid peroxidation involved in various cancers. The role of ferroptosis in the breast cancer (BC) acidic microenvironment remains unrevealed. Here, we reported that short-term acidosis induced ferroptosis of BC cells in the zinc finger AN1-type domain 5 (ZFAND5)/solute carrier family 3 member 2 (SLC3A2) dependent manner to suppress tumor growth using in silico and multiple biological methods. Mechanistically, we demonstrated that short-term acidosis increased total/lipid reactive oxygen species (ROS) level, decreased glutathione (GSH) level and induced the morphological changes of mitochondria. Specifically, acidosis restrained the protein stability of SLC3A2 by promoting its ubiquitination process. The prognostic analysis showed that higher expression of ZFAND5 and lower expression of SLC3A2 were correlated with longer overall survival of BC patients, respectively. Furthermore, in combination with ferroptosis agonist metformin, short-term acidosis could synergistically inhibit viability and enhance the ferroptosis of BC cells. Meanwhile, by the exploration of immune cells, short-term acidosis also induced M1 macrophage polarization, triggering processes of phagocytosis and ferroptosis in BC cells. This study demonstrated that short-term acidosis induced BC cell ferroptosis through ZFAND5/SLC3A2 signaling axis and promoted phagocytosis and ferroptosis of BC cells with M1 macrophage polarization, which might be a new mechanism for BC therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。