Abstract
DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high-throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin-treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C-terminal dual serine target motif unique to H2AX in the plant lineage showed 171-fold phosphorylation that was absent in atm mutant lines. The physiological significance of post-translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM-mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post-translational DNA damage signalling responses in plants and establish the requirement of H2AX phosphorylation for plant survival under genotoxic stress.
