Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes

通过共同递送化疗药物和基因增强叶酸修饰两亲纳米粒子的抗肿瘤功效

阅读:5
作者:Bojie Yu, Cui Tang, Chunhua Yin

Abstract

Folate (FA) modified amphiphilic linoleic acid (LA) and poly (β-malic acid) (PMLA) double grafted chitosan (LMC) nanoparticles (NPs) with optimum grafting degrees of hydrophobic LA and hydrophilic PMLA were developed for the co-delivery of paclitaxel (PTX) and survivin shRNA-expressing plasmid (iSur-pDNA). The resultant NPs exhibited particle size of 161 nm and zeta potential of 43 mV. FA modification and the increasing grafting degrees of LA and PMLA were correlated with the suppressed protein adsorption, the inhibited release of PTX, and the accelerated dissociation of pDNA. PTX loading, cellular uptake, nuclear accumulation of pDNA, in vitro gene silencing efficiency, and cell growth inhibition were promoted by FA modification and higher grafting degree of LA, but impeded by increasing grafting degree of PMLA. In tumor-bearing mice, co-delivery of PTX and iSur-pDNA exhibited enhanced antitumor efficacy and prolonged survival period as compared with single delivery of PTX or iSur-pDNA. These results indicated that amphiphilic LMC NPs could serve as a promising platform for the co-delivery of antitumor drugs and genes, and highlighted the importance of adjusting the hydrophobic and hydrophilic grafting degrees.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。