Identification of the inhibitory mechanism of ecumicin and rufomycin 4-7 on the proteolytic activity of Mycobacterium tuberculosis ClpC1/ClpP1/ClpP2 complex

鉴定ecumicin和rufomycin 4-7对结核分枝杆菌ClpC1/ClpP1/ClpP2复合物蛋白水解活性的抑制机制

阅读:8
作者:Jeongpyo Hong, Nguyen Minh Duc, Byeong-Chul Jeong, Sanghyun Cho, Gauri Shetye, Jin Cao, Hyun Lee, Cherlhyun Jeong, Hanki Lee, Joo-Won Suh

Abstract

Ecumicin and rufomycin 4-7 disrupt protein homeostasis in Mycobacterium tuberculosis by inhibiting the proteolytic activity of the ClpC1/ClpP1/ClpP2 complex. Although these compounds target ClpC1, their effects on the ATPase activity of ClpC1 and proteolytic activity of ClpC1/ClpP1/ClpP2 vary. Herein, we explored the ClpC1 molecular dynamics with these compounds through fluorescence correlation spectroscopy. The effect of these compounds on the ATPase activity of ClpC1-cys, the recombinant protein for fluorescence labeling, and proteolytic activity of ClpC1-cys/ClpP1/ClpP2 were identical to those of native ClpC1, whereas the intermolecular dynamics of fluorescence-labelled ClpC1 were different. Treatment with up to 1 nM ecumicin increased the population of slower diffused ClpC1 components compared with ClpC1 without ecumicin. However, this population was considerably reduced when treated with 10 nM ecumicin. Rufomycin 4-7 treatment resulted in a slower diffused component of ClpC1, and the portion of this component increased in a concentration-dependent manner. Ecumicin can generate an abnormal ClpC1 component, which cannot form normal ClpC1/ClpP1/ClpP2, via two different modes. Rufomycin 4-7 only generates slower diffused ClpC1 component that is inadequate to form normal ClpC1/ClpP1/ClpP2. Overall, we demonstrate that ecumicin and rufomycin 4-7 use different action mechanisms to generate abnormal ClpC1 components that cannot couple with ClpP1/ClpP2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。