Cytomorphology and Gene Expression Signatures of Anchorage-independent Aggregations of Oral Cancer Cells

口腔癌细胞锚定非依赖性聚集体的细胞形态和基因表达特征

阅读:5
作者:Kouhei Sakurai, Akira Nagai, Tatsuya Ando, Yasuhiro Sakai, Yuka Ideta, Yuichiro Hayashi, Junichi Baba, Kenji Mitsudo, Masaharu Akita, Nobutake Yamamichi, Hidetsugu Fujigaki, Taku Kato, Hiroyasu Ito

Aim

Cancer cells with high anchorage independence can survive and proliferate in the absence of adhesion to the extracellular matrix. Under anchorage-independent conditions, cancer cells adhere to each other and form aggregates to overcome various stresses. In this study, we investigated the cytomorphology and gene expression signatures of oral cancer cell aggregates. Materials and

Conclusion

The results suggest specific cytomorphological and gene expression changes in oral cancer cell aggregates. Our findings provide insights into the mechanisms underlying anchorage-independent oral cancer cell aggregation and reveal previously unknown potential diagnostic and therapeutic molecules.

Methods

Two oral cancer-derived cell lines, SAS and HSC-3 cells, were cultured in a low-attachment plate and their cytomorphologies were observed. The transcriptome between attached and detached SAS cells was examined using gene expression microarrays. Subsequently, gene enrichment analysis and Ingenuity Pathway Analysis were performed. Gene expression changes under attached, detached, and re-attached conditions were measured via RT-qPCR.

Results

While SAS cells formed multiple round-shaped aggregates, HSC-3 cells, which had lower anchorage independence, did not form aggregates efficiently. Each SAS cell in the aggregate was linked by desmosomes and tight junctions. Comparative transcriptomic analysis revealed 1,698 differentially expressed genes (DEGs) between attached and detached SAS cells. The DEGs were associated with various functions and processes, including cell adhesion. Moreover, under the detached condition, the expression of some epithelial genes (DSC3, DSP, CLDN1 and OCLN) were up-regulated. The changes in both cytomorphology and epithelial gene expression under the detached condition overall returned to their original ones when cells re-attached.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。