Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer

组织液化促进浸润性乳腺癌中的 cGAS-STING 细胞质 DNA 反应

阅读:6
作者:Emanuela Frittoli #, Andrea Palamidessi #, Fabio Iannelli, Federica Zanardi, Stefano Villa, Leonardo Barzaghi, Hind Abdo, Valeria Cancila, Galina V Beznoussenko, Giulia Della Chiara, Massimiliano Pagani, Chiara Malinverno, Dipanjan Bhattacharya, Federica Pisati, Weimiao Yu, Viviana Galimberti, Giuse

Abstract

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。