Targeting SOST using a small-molecule compound retards breast cancer bone metastasis

使用小分子化合物靶向 SOST 可延缓乳腺癌骨转移

阅读:7
作者:Lisha Sun #, Yixiao Zhang #, Guanglei Chen #, Yaoting Ji #, Qingtian Ma, Xinbo Qiao, Sijin Wu, Lin Zhou, Jiawen Bu, Xudong Zhu, Xiaoying Zhang, Xiaofan Jiang, Chao Liu, Xinnan Li, Yang Liu, Yongliang Yang, Caigang Liu

Background

Breast cancer metastasis to the bone can be exacerbated by osteoporosis, is associated with poor long-term survival, and has limited therapeutic options. Sclerostin (SOST) is an endogenous inhibitor of bone formation, and an attractive target for treatment of osteoporosis. However, it is unclear whether SOST can be used as a therapeutic target for bone metastases of breast cancer, and whether small molecule compounds that target SOST in breast cancer cells can inhibit breast cancer bone metastasis.

Conclusions

Our findings highlight a new class of potential therapeutics for treatment of bone metastasis in breast cancer.

Methods

SOST expression in 442 breast cancer tissues was characterized by immunohistochemistry and statistically analyzed for the association with breast cancer bone metastases. Bone metastatic breast cancer SCP2 cells were induced for SOST silencing or overexpression and their bone metastatic behaviors were tested in vitro and in vivo. To identify potential therapeutics, we screened inhibitors of the interaction of SOST with STAT3 from a small chemical molecule library and tested the inhibitory effects of one inhibitor on breast cancer growth and bone metastasis in vitro and in vivo.

Results

We found that up-regulated SOST expression was associated with breast cancer bone metastases and worse survival of breast cancer patients. SOST silencing significantly reduced the bone metastatic capacity of SCP2 cells. SOST interacted with STAT3 to enhance the TGF-β/KRAS signaling, increasing both tumor growth and bone metastasis. Treatment with one lead candidate, S6, significantly inhibited the growth of breast-cancer organoids and bone metastasis in mice. Conclusions: Our findings highlight a new class of potential therapeutics for treatment of bone metastasis in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。