Chronic nicotine, but not suramin or resveratrol, partially remediates the mania-like profile of dopamine transporter knockdown mice

慢性尼古丁(而非苏拉明或白藜芦醇)可部分改善多巴胺转运蛋白敲低小鼠的躁狂症状

阅读:10
作者:Molly A Kwiatkowski, Benjamin Z Roberts, Jordy van Enkhuizen, Baohu Ji, Xianjin Zhou, Jared W Young

Abstract

Bipolar disorder (BD) is a severe mental illness affecting 2% of the global population. Current pharmacotherapies provide incomplete symptom remediation, highlighting the need for novel therapeutics. BD is characterized by fluctuations between mania and depression, likely driven by shifts between hyperdopaminergia and hypercholinergia, respectively. Hyperdopaminergia may result from insufficient activity of the dopamine transporter (DAT), the primary mediator of synaptic dopamine clearance. The DAT knockdown (DAT KD) mouse recreates this mechanism and exhibits a highly reproducible hyperexploratory profile in the cross-species translatable Behavioral Pattern Monitor (BPM) that is: (a) consistent with that observed in BD mania patients; and (b) partially normalized by chronic lithium and valproate treatment. The DAT KD/BPM model of mania therefore exhibits high levels of face-, construct-, and predictive-validity for the pre-clinical assessment of putative anti-mania drugs. Three different drug regimens - chronic nicotine (nicotinic acetylcholine receptor (nAChR) agonist; 40 mg/kg/d, 26 d), subchronic suramin (anti-purinergic; 20 mg/kg, 1 × /wk, 4 wks), and subchronic resveratrol (striatal DAT upregulator; 20 mg/kg/d, 4 d) - were administered to separate cohorts of male and female DAT KD- and wildtype (WT) littermate mice, and exploration was assessed in the BPM. Throughout, DAT KD mice exhibited robust hyperexploratory profiles relative to WTs. Nicotine partially normalized this behavior. Resveratrol modestly upregulated DAT expression but did not normalize DAT KD behavior. These results support the mania-like profile of DAT KD mice, which may be partially remediated by nAChR agonists via restoration of disrupted catecholaminergic/cholinergic equilibrium. Delineating the precise mechanism of action of nicotine could identify more selective therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。