Conclusion
FFJQC alleviated the CaOx-induced renal EMT and fibrosis by regulating TGF-β/smad pathway. Therefore, the FFJQC is an important traditional Chinese medicine for the treatment of CaOx-induced renal injury and fibrosis.
Methods
60 male C57BL/6 mice were used in this experiment and divided into 6 groups. A mouse kidney stone model was created by intraperitoneal injection of glyoxylate at a dose of 100 mg/kg for 6 days. The standardized FFJQC was used to treat mouse crystal kidney injury by gavage at 1.35 and 2.7 g/kg, respectively. Western blotting and immunostaining for E-cadherin, cytokeratin 18 (CK18), vimentin, smooth muscle α-actin (α-SMA) and transforming growth factor β (TGF-β)/Smad pathway were conducted on renal tissues.
Objective
This study explores the therapeutic benefits and mechanism of FFJQC in oxalate-induced kidney injury. Materials and
Results
Following CaOx-induced kidney injury, the levels of E-cadherin and CK18 in kidney decreased, while vimentin and α-SMA levels increased. The FFJQC treatment increased the levels of E-cadherin and CK18 and decreased vimentin and α-SMA levels in varying degrees. What's more, the FFJQC reduced the expression of CaOx-induced fibrosis marker collagen II.
