The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection

猪瘟病毒感染过程中自噬对细胞稳态和抗病毒先天免疫的调节

阅读:8
作者:Xiaowen Li, Yiwan Song, Xinyan Wang, Cheng Fu, Feifan Zhao, Linke Zou, Keke Wu, Wenxian Chen, Zhaoyao Li, Jindai Fan, Yuwan Li, Bingke Li, Sen Zeng, Xiaodi Liu, Mingqiu Zhao, Lin Yi, Jinding Chen, Shuangqi Fan

Abstract

CSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear. In this study, using transcriptomics and metabolomics methods, we found that CSFV infection alters innate host immunity by activating the interferon pathway, inhibiting host inflammation, apoptosis, and remodelling host metabolism in porcine alveolar macrophages. Moreover, we revealed that autophagy could alter innate immunity and metabolism induced by CSFV infection. Enhanced autophagy further inhibited CSFV-induced RIG-I-IRF3 signal transduction axis and JAK-STAT signalling pathway and blocked type I interferon production while reducing autophagy inhibition of the NF-κB signalling pathway and apoptosis in CSFV infection cells. Furthermore, the level of CSFV infection-induced glycolysis and the content of lactate and pyruvate, as well as 3-phosphoglyceraldehyde, a derivative of glycolysis converted to serine, was altered by autophagy. We also found that silencing HK2 (hexokinase 2), the rate-limiting enzyme of glycolytic metabolism, could induce autophagy but reduce the interferon signalling pathway, NF-κB signalling pathway, and inhibition of apoptosis induced by CSFV infection. In addition, inhibited cellular autophagy by silencing ATG5 or using 3-Methyladenine, could backfill the inhibitory effect of silencing HK2 on the cellular interferon signalling pathway, NF-κB signalling pathway, and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。