Glucocorticoid caused lactic acid accumulation and damage in human chondrocytes via ROS-mediated inhibition of Monocarboxylate Transporter 4

糖皮质激素通过 ROS 介导的单羧酸转运蛋白 4 抑制导致人类软骨细胞中乳酸积聚和损伤

阅读:6
作者:Qingxian Li, Haitao Chen, Zhenyu Li, Fan Zhang, Liaobin Chen

Abstract

Osteoarthritis (OA) is a common joint disease lacking effective treatments. Dexamethasone (Dex) is often used to relieve joint pain. However, the adverse effects of Dex on cartilage can't be ignored. This study aimed to investigate the effect of Dex on articular cartilage and its mechanism by in vitro and in vivo experiments. The results showed that intra-articular injection with Dex damaged the matrix synthesis of cartilage. In vitro, Dex induced human chondrocytes mitochondrial dysfunction and increased reactive oxygen species (ROS) level, while down-regulated or unchanged key glycolysis genes, but increased lactic acid (LA) concentration. It was showed that high concentrations of LA induced chondrocytes apoptosis. Mechanistically, monocarboxylate transporter 4 (MCT4) was inhibited by Dex and had a significant negative correlation with ROS level. Further results showed that the trimethyl-histone H3-K4 (H3K4me3) level of MCT4 was reduced by Dex, and the ROS scavenger N-Acetyl-L-cysteine (NAC) and α-ketoglutarate (α-KG) alleviated the Dex-induced obstruction of matrix synthesis and high level of ROS by up-regulating the H3K4me3 level of MCT4 and its expression. In conclusion, Dex exhibited harm to cartilage, shown as mitochondrial dysfunction and increased ROS. The latter further caused LA accumulation in chondrocytes via decreasing the H3K4me3 level of MCT4 and its expression, which may account for the long-term side effects of Dex on chondrocytes. And α-KG may be used as an auxiliary drug to weaken the toxic effect of Dex on cartilage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。