Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect

羟基磷灰石纳米粒子在肿瘤相关骨段缺损中的应用

阅读:9
作者:Kun Zhang, Yong Zhou, Cong Xiao, Wanlu Zhao, Hongfeng Wu, Jiaoqing Tang, Zhongtao Li, Sen Yu, Xiangfeng Li, Li Min, Zhentao Yu, Gang Wang, Lin Wang, Kai Zhang, Xiao Yang, Xiangdong Zhu, Chongqi Tu, Xingdong Zhang

Abstract

Hydroxyapatite (HA) has been widely applied in bone repair because of its superior biocompatibility. Recently, a proliferation-suppressive effect of HA nanoparticles (n-HA) against various cancer cells was reported. This study was aimed at assessing the translational value of n-HA both as a bone-regenerating material and as an antitumor agent. Inhibition of tumor growth, prevention of metastasis, and enhancement of the survival rate of tumor-bearing rabbits treated with n-HA were demonstrated. Activated mitochondrial-dependent apoptosis in vivo was confirmed, and we observed that a stimulated immune response was involved in the n-HA-induced antitumor effect. A porous titanium scaffold loaded with n-HA was fabricated and implanted into a critical-sized segmental bone defect in a rabbit tumor model. The n-HA-releasing scaffold not only showed a prominent effect in suppressing tumor growth and osteolytic lesion but also promoted bone regeneration. These findings provide a rationale for using n-HA in tumor-associated bone segmental defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。