Pioglitazone Ameliorates Gentamicin Ototoxicity by Affecting the TLR and STAT Pathways in the Early Postnatal Organ of Corti

吡格列酮通过影响出生后早期科尔蒂氏器中的TLR和STAT通路来减轻庆大霉素的耳毒性。

阅读:1
作者:Marijana Sekulic-Jablanovic ,Matthew B Wright ,Vesna Petkovic ,Daniel Bodmer

Abstract

Noise trauma, infection, and ototoxic drugs are frequent external causes of hearing loss. With no pharmacological treatments currently available, understanding the mechanisms and pathways leading to auditory hair cell (HC) damage and repair is crucial for identifying potential pharmacological targets. Prior research has implicated increased reactive oxygen species (ROS) and inflammation as general mechanisms of hearing loss common to diverse causes. Novel targets of these two key mechanisms of auditory damage may provide new paths toward the prevention and treatment of hearing loss. Pioglitazone, an oral antidiabetic drug from the class of thiazolidinediones, acts as an agonist of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) and is involved in the regulation of lipid and glucose metabolism. PPAR-γ is an important player in repressing the expression of inflammatory cytokines and signaling molecules. We evaluated the effects of pioglitazone in the mouse Organ of Corti (OC) explants to characterize its influence on signaling pathways involved in auditory HC damage. The OC explants was cultured with pioglitazone, gentamicin, or a combination of both agents. Pioglitazone treatment resulted in significant repression of interferon (IFN)-α and -gamma pathways and downstream cytokines, as assessed by RNA sequencing and quantitative PCR gene expression assays. More detailed investigation at the single gene and protein level showed that pioglitazone mediated its anti-inflammatory effects through alterations of the Toll-like receptor (TLR) and STAT pathways. Together, these results indicate that pioglitazone significantly represses IFN and TLR in the cochlea, dampening the activity of gentamicin-induced pathways. These data support our previous results demonstrating significant protection of auditory HCs in the OC explants exposed to pioglitazone and other PPAR-targeted agents. Keywords: PPARγ; cochlea; gentamicin; inflammation; ototoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。