Synthetic modified vaccinia Ankara vaccines confer cross-reactive and protective immunity against mpox virus

合成改良安卡拉痘苗可产生针对牛痘病毒的交叉反应和保护性免疫

阅读:8
作者:Flavia Chiuppesi, John A Zaia, Miguel-Angel Gutierrez-Franco, Sandra Ortega-Francisco, Minh Ly, Mindy Kha, Taehyun Kim, Shannon Dempsey, Swagata Kar, Alba Grifoni, Alessandro Sette, Felix Wussow, Don J Diamond

Background

Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS. Given the potential threat of MPXV resurgence and need for vaccine alternatives, we aimed to assess the capacity COH04S1 and its synthetic MVA (sMVA) backbone to confer MPXV-specific immunity.

Conclusions

These results demonstrate the capacity of sMVA vaccines to elicit cross-reactive and protective orthopox-specific immunity against MPXV, suggesting that COH04S1 and sMVA could be developed as bivalent or monovalent mpox vaccine alternatives against MPXV.

Methods

We evaluated orthopoxvirus-specific and MPXV cross-reactive immune responses in samples collected during a Phase 1 clinical trial of COH04S1 and in non-human primates (NHP) vaccinated with COH04S1 or its sMVA backbone. MPXV cross-reactive immune responses in COH04S1-vaccinated healthy adults were compared to responses measured in healthy subjects vaccinated with JYNNEOS. Additionally, we evaluated the protective efficacy of COH04S1 and sMVA against mpox in mpox-susceptible CAST/EiJ mice.

Results

COH04S1-vaccinated individuals develop robust orthopoxvirus-specific humoral and cellular responses, including cross-reactive antibodies to MPXV-specific virion proteins as well as MPXV cross-neutralizing antibodies in 45% of the subjects. In addition, NHP vaccinated with COH04S1 or sMVA show similar MPXV cross-reactive antibody responses. Moreover, MPXV cross-reactive humoral responses elicited by COH04S1 are comparable to those measured in JYNNEOS-vaccinated subjects. Finally, we show that mice vaccinated with COH04S1 or sMVA are protected from lung infection following challenge with MPXV clade IIb.1. Conclusions: These results demonstrate the capacity of sMVA vaccines to elicit cross-reactive and protective orthopox-specific immunity against MPXV, suggesting that COH04S1 and sMVA could be developed as bivalent or monovalent mpox vaccine alternatives against MPXV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。