Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion

鳞片到羽毛的转化需要多个调节模块

阅读:9
作者:Ping Wu, Jie Yan, Yung-Chih Lai, Chen Siang Ng, Ang Li, Xueyuan Jiang, Ruth M Elsey, Randall Widelitz, Ruchi Bajpai, Wen-Hsiung Li, Cheng-Ming Chuong

Abstract

The origin of feathers is an important question in Evo-Devo studies, with the eventual evolution of vaned feathers which are aerodynamic, allowing feathered dinosaurs and early birds to fly and venture into new ecological niches. Studying how feathers and scales are developmentally specified provides insight into how a new organ may evolve. We identified feather-associated genes using genomic analyses. The candidate genes were tested by expressing them in chicken and alligator scale forming regions. Ectopic expression of these genes induced intermediate morphotypes between scales and feathers which revealed several major morphogenetic events along this path: Localized growth zone formation, follicle invagination, epithelial branching, feather keratin differentiation, and dermal papilla formation. In addition to molecules known to induce feathers on scales (retinoic acid, β-catenin), we identified novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce one or more regulatory modules guiding these morphogenetic events. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, whereas others exhibit characteristics of modern avian feathers. We propose these morpho-regulatory modules were used to diversify archosaur scales and to initiate feather evolution. The regulatory combination and hierarchical integration may have led to the formation of extant feather forms. Our study highlights the importance of integrating discoveries between developmental biology and paleontology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。