Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): impact of sleep loss and relation to glucose metabolism

循环烟酰胺磷酸核糖基转移酶 (Nampt/visfatin/PBEF) 的昼夜节律:睡眠不足的影响及其与葡萄糖代谢的关系

阅读:6
作者:Christian Benedict, Anton Shostak, Tanja Lange, Samantha J Brooks, Helgi B Schiöth, Bernd Schultes, Jan Born, Henrik Oster, Manfred Hallschmid

Conclusions

Serum Nampt concentrations follow a diurnal rhythm, peaking in the afternoon. Sleep loss induces a Nampt rhythm phase shift that is positively related to the impairment of postprandial glucose metabolism due to sleep deprivation, suggesting a regulatory impact of Nampt rhythmicity on glucose homeostasis.

Objective

Our objective was to examine the 24-h profile of serum Nampt in humans under conditions of sleep and sleep deprivation and relate the Nampt pattern to morning postprandial glucose metabolism. Intervention: Fourteen healthy men participated in two 24-h sessions starting at 1800 h, including either regular 8-h-night sleep or continuous wakefulness. Serum Nampt and leptin were measured in 1.5- to 3-h intervals. In the morning, plasma glucose and serum insulin responses to standardized breakfast intake were determined. Main outcome measures: Under regular sleep-wake conditions, Nampt levels displayed a pronounced diurnal rhythm, peaking during early afternoon (P < 0.001) that was inverse to leptin profiles peaking in the early night. When subjects stayed awake, the Nampt rhythm was preserved but phase advanced by about 2 h (P < 0.05). Two-hour postprandial plasma glucose concentrations were elevated after sleep loss (P < 0.05), whereas serum insulin was not affected. The relative glucose increase due to sleep loss displayed a positive association with the magnitude of the Nampt phase shift (r = 0.54; P < 0.05). Conclusions: Serum Nampt concentrations follow a diurnal rhythm, peaking in the afternoon. Sleep loss induces a Nampt rhythm phase shift that is positively related to the impairment of postprandial glucose metabolism due to sleep deprivation, suggesting a regulatory impact of Nampt rhythmicity on glucose homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。