Acid-facilitated product release from a Mo(IV) center: relevance to oxygen atom transfer reactivity of molybdenum oxotransferases

酸促进 Mo(IV) 中心产物的释放:与钼氧转移酶的氧原子转移反应性的相关性

阅读:4
作者:Feifei Li, Marat R Talipov, Chao Dong, Sofia Bali, Keying Ding

Abstract

We report that pyridinium ions (HPyr+) accelerate the conversion of [Tp*MoIVOCl(OPMe3)] (1) to [Tp*MoIVOCl(NCCH3)] (2) by 103-fold, affording 2 in near-quantitative yield; Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate. This novel reactivity and the mechanism of this reaction were investigated in detail. The formation of 2 followed pseudo-first-order kinetics, with the observed pseudo-first-order rate constant (k obs) linearly correlated with [HPyr+]. An Eyring plot revealed that this HPyr+-facilitated reaction has a small positive value of ∆S ‡ indicative of a dissociative interchange (Id) mechanism, different from the slower associative interchange (Ia) mechanism in the absence of HPyr+ marked with a negative ∆S ‡. Interestingly, log(k obs) was found to be linearly correlated to the acidity of substituted pyridinium ions. This novel reactivity is further investigated using combined DFT and ab initio coupled cluster methods. Different reaction pathways, including Id, Ia, and possible alternative routes in the absence or presence of HPyr+, were considered, and enthalpy and free energies were calculated for each pathway. Our computational results further underscored that the Id route is energetically favored in the presence of HPyr+, in contrast with the preferred Ia-NNO pathway in the absence of HPyr+. Our computational results also revealed molecular-level details for the HPyr+-facilitated Id route. Specifically, HPyr+ initially becomes hydrogen-bonded to the oxygen atom of the Mo(IV)-OPMe3 moiety, which lowers the activation barrier for the Mo-OPMe3 bond cleavage in a rate-limiting step to dissociate the OPMe3 product. The implications of our results were discussed in the context of molybdoenzymes, particularly the reductive half-reaction of sulfite oxidase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。