Structure-Based Design of Acetolactate Synthase From Bacillus licheniformis Improved Protein Stability Under Acidic Conditions

基于结构的设计地衣芽孢杆菌乙酰乳酸合酶可提高酸性条件下的蛋白质稳定性

阅读:6
作者:Ting Zhao, Yuan Li, Siqi Yuan, Yang Ye, Zhifu Peng, Rongqing Zhou, Jun Liu

Abstract

Catabolic acetolactate synthase (cALS) plays a crucial role in the quality of liquor because of its ability to catalyze the synthesis of the endogenous precursor product α-acetolactate of the aromatic compound tetramethylpyrazine (TTMP) and acetoin. However, the vulnerability of cALS to acidic conditions limits its application in the Chinese liquor brewing industry. Here we report the biochemical characterization of cALS from B. licheniformis T2 (BlALS) that was screened from Chinese liquor brewing microorganisms. BlALS showed optimal activity levels at pH 7.0, and the values of K m and Vmax were 27.26 mM and 6.9 mM⋅min-1, respectively. Through site-directed mutagenesis, we improved the stability of BlALS under acidic conditions. Replacing the two basic residues of BlALS with acidic mutations (N210D and H399D) significantly improved the acid tolerance of the enzyme with a prolonged half-life of 2.2 h (compared with wild-type BlALS of 0.8 h) at pH 4.0. Based on the analysis of homologous modeling, the positive charge area of the electrostatic potential on the protein surface and the number of hydrogen bonds near the active site increased, which helped BlALSN210D-H399D to withstand the acidic environment; this could extend its application in the food fermentation industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。