Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples

对尿液样本中离心捕获的细菌进行快速、不依赖培养的光学诊断

阅读:5
作者:Ulrich-Christian Schröder, Frank Bokeloh, Mary O'Sullivan, Uwe Glaser, Katharina Wolf, Wolfgang Pfister, Jürgen Popp, Jens Ducrée, Ute Neugebauer

Abstract

This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This "Lab-on-a-Disc" platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10(-7) cells ml(-1) within a 4 μl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。