Ferritinophagic Flux Was a Driving Force in Determination of Status of EMT, Ferroptosis, and NDRG1 Activation in Action of Mechanism of 2-Pyridylhydrazone Dithiocarbamate S-Acetic Acid

铁蛋白吞噬通量是确定 EMT 状态、铁死亡和 NDRG1 激活的驱动力,是 2-吡啶肼二硫代氨基甲酸酯 S-乙酸作用机制的作用

阅读:4
作者:Hao Li, Wei Zhou, Huiping Wei, Longlong Li, Xu Wang, Yongli Li, Shaoshan Li, Changzheng Li

Abstract

Ferritinophagy is a process of ferritin degradation in lysosomes; however, how its effect on other cellular events, such as epithelial-mesenchymal transition (EMT) and ferroptosis remains elusive. In this study, we determined how ferritinophagic flux influence the status of EMT and ferroptosis in HepG2 cell. Our data revealed that 2-pyridylhydrazone dithiocarbamate s-acetic acid (PdtaA) induced EMT inhibition involved ferritinophagy-mediated ROS production, but addition of ferrostatin-1 could attenuate the effect of PdtaA on the regulation of EMT-related proteins, suggesting that ferroptosis might involve in the EMT regulation. Next, downregulation of Gpx4 and xCT as well as enhanced lipid peroxidation further supported that PdtaA was able to induce ferroptosis. Knockdown of NCOA4 significantly attenuated the regulatory effect of PdtaA on related proteins which highlighted that the strength of ferritinophagic flux (NCOA4/ferritin) was a driving force in determination of the status of EMT and ferroptosis. Furthermore, NDRG1 activation was also observed, and knockdown of NDRG1 similarly influenced the expressions of ferroptosis-related proteins, suggesting that NDRG1 also involved ferroptosis induction, which was first reported. Taken together, PdtaA-induced EMT inhibition, ferroptosis, and NDRG1 activation all depended on the strength of ferritinophagic flux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。