Short-Term Sleep Loss Alters Cytokine Gene Expression in Brain and Peripheral Tissues and Increases Plasma Corticosterone of Zebra Finch (Taeniopygia guttata)

短期睡眠不足改变斑胸草雀(Taeniopygia guttata)大脑和外周组织中的细胞因子基因表达并增加血浆皮质酮

阅读:6
作者:Laken N Cooper, Ila Mishra, Noah T Ashley

Abstract

Lack of sleep incurs physiological costs that include increased inflammation and alterations in the hypothalamic-pituitary-adrenal axis. Specifically, sleep restriction or deprivation leads to increased pro-inflammatory cytokine expression and elevated glucocorticoids in rodent models, but whether birds exact similar costs is unknown. In this study, we examined whether zebra finch (Taeniopygia guttata), an avian model species, exhibits physiological costs of sleep loss by using a novel automated sleep fragmentation/deprivation method, wherein a horizontal wire sweeps across a test cage to disrupt sleep every 120 s. We measured pro-inflammatory (IL-1β and IL-6) and anti-inflammatory (IL-10) cytokine gene expression in the periphery (fat, liver, spleen, and heart) and brain (hypothalamus, hippocampus, and apical hyperpallium) of captive finches after 12 h of exposure to a moving or stationary (control) bar during the night or the day. Plasma corticosterone, body mass, and behavioral profiles were also assessed. We predicted that birds undergoing sleep loss would exhibit elevated pro-inflammatory and reduced anti-inflammatory gene expression in brain and peripheral tissues compared with control birds. In addition, we predicted an increase in plasma corticosterone levels after sleep loss. As predicted, sleep loss increased pro-inflammatory gene expression, specifically in adipose tissue (IL-6), spleen (IL-1), and hippocampus (IL-6), but a decrease in anti-inflammatory expression (IL-10) was not detected. However, sleep loss elevated baseline concentrations of plasma corticosterone. Taken together, these results suggest that a diurnal songbird is sensitive to the costs of sleep loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。