IP3-Mediated Calcium Signaling Is Involved in the Mechanism of Fractalkine-Induced Hyperalgesia Response

IP3 介导的钙信号参与 Fractalkine 诱发的痛觉过敏反应机制

阅读:4
作者:Aitao Wang, Tingting Yang, Lingli Zhang, Lizhou Jia, Qingping Wu, Shanglong Yao, Jianjun Xu, Hongxin Yang

Abstract

BACKGROUND Fractalkine is widely expressed throughout the brain and spinal cord, where it can exert effects on pain enhancement and hyperalgesia by activating microglia through CX3C chemokine receptor 1 (CX3CR1), which triggers the release of several pro-inflammatory cytokines in the spinal cord. Fractalkine has also been shown to increase cytosolic calcium ([Ca2+]i) in microglia. MATERIAL AND METHODS Based on the characteristics of CX3CR1, a G protein-coupled receptor, we explored the role of inositol 1,4,5-trisphosphate (IP3) signaling in fractalkine-induced inflammatory response in BV-2 cells in vitro. The effect and the underlying mechanism induced by fractalkine in the brain were observed using a mouse model with intracerebroventricular (i.c.v.) injection of exogenous fractalkine. RESULTS [Ca2+]i was significantly increased and IL-1β and TNF-α levels were higher in the fractalkine-treated cell groups than in the farctalkine+ 2-APB groups. We found that i.c.v. injection of fractalkine significantly increased p-p38MAPK, IL-1β, and TNF-α expression in the brain, while i.c.v. injection of a fractalkine-neutralizing antibody (anti-CX3CR1), trisphosphate receptor (IP3R) antagonist (2-APB), or p38MAPK inhibitor (SB203580) prior to fractalkine addition yielded an effective and reliable anti-allodynia effect, following the reduction of p-p38MAPK, IL-1β, and TNF-α expression. CONCLUSIONS Our results suggest that fractalkine leads to hyperalgesia, and the underlying mechanism may be associated with IP3/p38MAPK-mediated calcium signaling and its phlogogenic properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。