Abstract
In the present study, an estuarine benthic fish, Mugilogobius chulae (M. chulae), was exposed to hypoxia, atorvastatin (ATV), a highly used and widely detected lipid-lowering drug in aquatic environment, and the combination of hypoxia and ATV for 7 days, respectively, so as to address and compare the effects of the combination of hypoxia and ATV exposure on M. chulae. The results showed that lipid metabolism in M. chulae was greatly affected: lipid synthesis was blocked and catabolism was enhanced, exhibiting that lipids content were heavily depleted. The combined exposure of hypoxia and ATV caused oxidative stress and induced massive inflammatory response in the liver of M. chulae. Signaling pathways involving in energy metabolism and redox responses regulated by key factors such as HIF, PPAR, p53 and sirt1 play important regulatory roles in hypoxia-ATV stress. Critically, we found that the response of M. chulae to ATV was more sensitive under hypoxia than normoxia. ATV exposure to aquatic non-target organisms under hypoxic conditions may make a great impact on the detoxification and energy metabolism, especially lipid metabolism, and aggravate the oxidative pressure of the exposed organisms.
