Optimization of urinary small extracellular vesicle isolation protocols: implications in early diagnosis, stratification, treatment and prognosis of diseases in the era of personalized medicine

尿液小细胞外囊泡分离方案的优化:对个性化医疗时代疾病早期诊断、分层、治疗和预后的意义

阅读:7
作者:Qing-Gen Chen, Lian Chen, Qiong-Hui Zhong, Lei Zhang, Yu-Huan Jiang, Shu-Qi Li, Ting-Yu Qin, Fan Sun, Xia-Hong You, Wei-Ming Yang, Bo Huang, Xiao-Zhong Wang

Abstract

Extracellular vesicles isolation from urine was severely interfered by polymeric Tamm-Harsefall protein due to its ability to entrap exosome. Studies had been reported to optimize the extraction of urine extracellular vesicles by using reducing agents, surfactants, salt precipitation or ultrafiltration, but rarely based on highly specific purification methods. We optimized the density gradient centrifugation method for the isolation of urinary small extracellular vesicles (sEV) and compared seven differential centrifugation protocols to obtain the high-yield and high-purity sEV isolation procedures. Our study showed Tris sucrose gradient centrifugation at 25°C had more concentrated distribution of exosomal marker in the gradient compared to Tris sucrose gradient centrifugation at 4°C and PBS sucrose gradient centrifugation. Dissolving the 16000 g pellet using Tris, Nonidet™ P 40 or Dithiothreitol then pooling the supernatants did not increase the exosomal markers and number of nanoparticles in sEV preparation compared to the control and PBS groups. Differential centrifugation at room temperature without ultrafiltration recovered more exosome-like vesicles, exosomal markers and nanoparticles than that at 4°C or combining ultrafiltration. Differential centrifugation at RT without ultrafiltration and salt precipitation recovered the highest number of nanoparticles than other protocols. However, differential centrifugation at RT combining 100 kd ultrafiltration obtained the highest purity of sEV calculated by Nanoparticle number/Total protein. In conclusion, we had established two urinary sEV isolation procedures that can recovered higher yield of sEV and more pure preparation of sEV. It is not recommended to treating 16000 g pellet with reducing agents or surfactants to increase the yield of sEV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。