Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission

人类滋养细胞感知丙型肝炎病毒可诱导先天免疫反应并募集母体 NK 细胞:对限制垂直传播的潜在影响

阅读:6
作者:Silvia Giugliano, Margaret G Petroff, Bryce D Warren, Susmita Jasti, Caitlin Linscheid, Ashley Ward, Anita Kramer, Evgenia Dobrinskikh, Melissa A Sheiko, Michael Gale Jr, Lucy Golden-Mason, Virginia D Winn, Hugo R Rosen

Abstract

Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。