A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis - Insight into the observed synergism

解释透皮超声促渗过程中化学渗透促进剂输送到皮肤的物理机制 - 深入了解观察到的协同作用

阅读:4
作者:Baris E Polat, William M Deen, Robert Langer, Daniel Blankschtein

Abstract

The synergism between low-frequency sonophoresis (LFS) and chemical penetration enhancers (CPEs), especially surfactants, in transdermal enhancement has been investigated extensively since this phenomenon was first observed over a decade ago. In spite of the identifying that the origin of this synergism is the increased penetration and subsequent dispersion of CPEs in the skin in response to LFS treatment, to date, no mechanism has been directly proposed to explain how LFS induces the observed increased transport of CPEs. In this study, we propose a plausible physical mechanism by which the transport of all CPEs is expected to have significantly increased flux into the localized-transport regions (LTRs) of LFS-treated skin. Specifically, the collapse of acoustic cavitation microjets within LTRs induces a convective flux. In addition, because amphiphilic molecules preferentially adsorb onto the gas/water interface of cavitation bubbles, amphiphiles have an additional adsorptive flux. In this sense, the cavitation bubbles effectively act as carriers for amphiphilic molecules, delivering surfactants directly into the skin when they collapse at the skin surface as cavitation microjets. The flux equations derived for CPE delivery into the LTRs and non-LTRs during LFS treatment, compared to that for untreated skin, explain why the transport of all CPEs, and to an even greater extent amphiphilic CPEs, is increased during LFS treatment. The flux model is tested with a non-amphiphilic CPE (propylene glycol) and both nonionic and ionic amphiphilic CPEs (octyl glucoside and sodium lauryl sulfate, respectively), by measuring the flux of each CPE into untreated skin and the LTRs and non-LTRs of LFS-treated skin. The resulting data shows very good agreement with the proposed flux model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。