Cell wall composition and transcriptomics in stem tissues of stinging nettle (Urtica dioica L.): Spotlight on a neglected fibre crop

荨麻(Urtica dioica L.)茎组织中的细胞壁组成和转录组学:聚焦一种被忽视的纤维作物

阅读:6
作者:Xuan Xu, Aurélie Backes, Sylvain Legay, Roberto Berni, Claudia Faleri, Edoardo Gatti, Jean-Francois Hausman, Giampiero Cai, Gea Guerriero

Abstract

Stinging nettle (Urtica dioica L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented. The transcriptome of whole internodes sampled at the top and middle of the stem is then compared with the core and cortical tissues sampled at the bottom. Young internodes show an enrichment in genes involved in the biosynthesis of phytohormones (auxins and jasmonic acid) and secondary metabolites (flavonoids). The core of internodes collected at the bottom of the stem is enriched in genes partaking in different aspects of secondary cell wall formation (cellulose, hemicellulose, lignin biosynthesis), while the cortical tissues reveal the presence of a C starvation signal probably due to the UDP-glucose demand necessary for the thickening phase of bast fibres. Cell wall analysis indicates a difference in rhamnogalacturonan structure/composition of mature bast fibres, as evidenced by the higher levels of galactose measured, as well as the occurrence of more water-soluble pectins in elongating internodes. The targeted quantification of phenolics shows that the middle internode and the cortical tissues at the bottom have higher contents than top internodes. Ultrastructural analyses reveal the presence of a gelatinous layer in bast fibres with a lamellar structure. The data presented will be an important resource and reference for future molecular studies on a neglected fibre crop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。