Proteomic consequences of a single gene mutation in a colorectal cancer model

结直肠癌模型中单个基因突变的蛋白质组学后果

阅读:7
作者:Patrick J Halvey, Bing Zhang, Robert J Coffey, Daniel C Liebler, Robbert J C Slebos

Abstract

The proteomic effects of specific cancer-related mutations have not been well characterized. In colorectal cancer (CRC), a relatively small number of mutations in key signaling pathways appear to drive tumorigenesis. Mutations in adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, occur in up to 60% of CRC tumors. Here we examine the proteomic consequences of a single gene mutation by using an isogenic CRC cell culture model in which wildtype APC expression has been ectopically restored. Using LC-MS/MS label free shotgun proteomics, over 5000 proteins were identified in SW480Null (mutant APC) and SW480APC (APC restored). We observed 155 significantly differentially expressed proteins between the two cell lines, with 26 proteins showing opposite expression trends relative to gene expression measurements. Protein changes corresponded to previously characterized features of the APCNull phenotype: loss of cell adhesion proteins, increase in cell cycle regulators, alteration in Wnt signaling related proteins, and redistribution of β-catenin. Increased expression of RNA processing and isoprenoid biosynthetic proteins occurred in SW480Null cells. Therefore, shotgun proteomics reveals proteomic differences associated with a single gene change, including many novel differences that fall outside known target pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。