Nuclear factor erythroid 2-related factor 2 promotes radioresistance by regulating glutamate-cysteine ligase modifier subunit and its unique immunoinvasive pattern

核因子红细胞2相关因子2通过调节谷氨酸-半胱氨酸连接酶修饰亚基及其独特的免疫侵袭模式促进放射抗性

阅读:8
作者:Zhaoyuan Xue, Yiliyaer Nuerrula, Yilidana Sitiwaerdi, Mayinur Eli

Abstract

The enzyme glutamate-cysteine ligase modifier subunit (GCLM) serves as the initial rate-limiting factor in glutathione (GSH) synthesis. GSH is the preferred substrate for glutathione peroxidase 4 (GPX4), directly impacting its activity and stability. This study aims to elucidate the expression of GCLM and its correlation with the nuclear factor erythroid 2-related factor 2 (NFE2L2), commonly referred to as NRF2, in esophageal squamous cell carcinoma (ESCC) and further investigate the potential signaling axis of radiotherapy resistance caused by NRF2-mediated regulation of ferroptosis in ESCC. The expression of NRF2, GCLM, and GPX4 in ESCC was analyzed by bioinformatics, and their relationship with ferroptosis was verified through cell function experiments. Their role in radioresistance was then investigated through multiple validation steps. Bioinformatics analysis was employed to determine the immune infiltration pattern of NRF2 in ESCC. Furthermore, the effect of NRF2-mediated massive macrophage M2 infiltration on radiotherapy and ferroptosis was validated through in vivo experiments. In vitro assays demonstrated that overactivated NRF2 promotes radioresistance by directly binding to the promoter region of GCLM. The Tumor Immune Estimation Resource (TIMER) and quanTIseq analyses revealed NRF2 enrichment in M2 macrophages with a positive correlation. Co-culturing KYSE450 cells with M2 macrophages demonstrated that a significant infiltration of macrophages M2 can render ESCC cells resistant to radiotherapy but restore their sensitivity to ferroptosis in the process. Our study elucidates a link between the NRF2-GCLM-GSH-GPX4 signaling axis in ESCC, highlighting its potential as a therapeutic target for antagonistic biomarkers of resistance in the future. Additionally, it provides a novel treatment avenue for ESCC metastasis and radioresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。