Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina

大鼠离体视网膜中谷氨酸处理后神经祖细胞诱导过程中戊糖磷酸通路和 HIF-1α 表达的上调

阅读:10
作者:Kazuhiro Tokuda, Byron Baron, Chiemi Yamashiro, Yasuhiro Kuramitsu, Takao Kitagawa, Masaaki Kobayashi, Koh-Hei Sonoda, Kazuhiro Kimura

Abstract

The metabolic state influences the regulation of neural stem/progenitor cells. The pentose phosphate pathway (PPP), an alternative metabolic pathway that operates parallel to glycolysis, not only provides key intermediates for biosynthetic reactions but also controls the fate of neural stem/progenitor cells. We have previously shown that glutamate application leads to the induction of neural progenitor cells in mature ex vivo rat retina. In this study, we investigated whether regulation of the PPP might be changed following glutamate treatment of the retina. Immunoblot analysis revealed that the amount of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP as well as that of 6-phosphogluconate dehydrogenase (6PGD), another enzyme in this pathway, increased in the glutamate-treated retina. Consistent with the fact that both these enzymes generate reduced nicotinamide adenine dinucleotide phosphate (NADPH), the amount of NAPDH in the treated retina was significantly higher compared with that in the untreated retina. We also found that both DNA synthesis as well as the expression of fatty acid synthase (FASN) increased significantly in the glutamate-treated retina. Furthermore, hypoxia-inducible factor 1-α (HIF-1α), a positive transcriptional regulator of PPP enzymes, was up-regulated at both messenger RNA (mRNA) and protein levels. Finally, we found the interaction of HIF-1α with the M2 isozyme of pyruvate kinase (PKM2), with this interaction having been shown to contribute to a positive feedback loop in the control of glycolysis. Our results thus show that specific metabolic change in the PPP occurs in the process of neural progenitor cell induction in the mature rat retina.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。