Endothelin receptor type A is involved in the development of oxaliplatin-induced mechanical allodynia and cold allodynia acting through spinal and peripheral mechanisms in rats

内皮素受体 A 型参与奥沙利铂诱发的大鼠机械性异常疼痛和冷性异常疼痛的发生,并通过脊髓和外周机制起作用

阅读:9
作者:Kae Matsuura, Atsushi Sakai, Yuji Watanabe, Yasunori Mikahara, Atsuhiro Sakamoto, Hidenori Suzuki

Abstract

Oxaliplatin, a platinum-based chemotherapeutic agent, frequently causes severe neuropathic pain typically encompassing cold allodynia and long-lasting mechanical allodynia. Endothelin has been shown to modulate nociceptive transmission in a variety of pain disorders. However, the action of endothelin varies greatly depending on many variables, including pain causes, receptor types (endothelin type A (ETA) and B (ETB) receptors) and organs (periphery and spinal cord). Therefore, in this study, we investigated the role of endothelin in a Sprague-Dawley rat model of oxaliplatin-induced neuropathic pain. Intraperitoneal administration of bosentan, a dual ETA/ETB receptor antagonist, effectively blocked the development or prevented the onset of both cold allodynia and mechanical allodynia. The preventive effects were exclusively mediated by ETA receptor antagonism. Intrathecal administration of an ETA receptor antagonist prevented development of long-lasting mechanical allodynia but not cold allodynia. In marked contrast, an intraplantar ETA receptor antagonist had a suppressive effect on cold allodynia but only had a partial and transient effect on mechanical allodynia. In conclusion, ETA receptor antagonism effectively prevented long-lasting mechanical allodynia through spinal and peripheral actions, while cold allodynia was prevented through peripheral actions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。