Basal Level p53 Suppresses Antiviral Immunity against Foot-and-Mouth Disease Virus

基础水平 p53 抑制针对口蹄疫病毒的抗病毒免疫

阅读:7
作者:Tianliang Zhang, Haotai Chen, Xinsheng Liu, Linlin Qi, Xin Gao, Kailing Wang, Kaishen Yao, Jie Zhang, Yuefeng Sun, Yongguang Zhang, Run Wu

Abstract

Tumor suppressor protein p53 (p53) is a master transcription factor that plays key roles in cell cycle arrest, apoptosis, senescence, and metabolism, as well as regulation of innate immunity during virus infection. In order to facilitate their replication and spreading, viruses have evolved to manipulate p53 function through different strategies, with some requiring active p53 while others demand reduction/inhibition of p53 activity. However, there are no clear-cut reports about the roles of p53 during the infection of foot-and-mouth disease virus (FMDV), the causative agent of a highly contagious foot-and-mouth disease (FMD) of cloven-hoofed animals. Here we showed that p53 level was dynamically regulated during FMDV infection, being degraded at the early infection stage but recovered to the basal level at the late stage. Cells depleted of p53 showed inhibited FMDV replication and enhanced expression of the immune-related genes, whereas overexpression of p53 didn't affect the viral replication. Viral challenge assay with p53 knockout mice obtained similar results, with viral load decreased, histopathological changes alleviated, and lifespan extended in the p53 knockout mice. Together, these data demonstrate that basal level p53 is required for efficient FMDV replication by suppressing the innate immunity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。