Involvement of DNA Damage Response via the Ccndbp1-Atm-Chk2 Pathway in Mice with Dextran-Sodium-Sulfate-Induced Colitis

DNA 损伤反应通过 Ccndbp1-Atm-Chk2 通路参与葡聚糖-硫酸钠诱发的结肠炎小鼠

阅读:9
作者:Ryoko Horigome, Kenya Kamimura, Yusuke Niwa, Kohei Ogawa, Ken-Ichi Mizuno, Koichi Fujisawa, Naoki Yamamoto, Taro Takami, Tomoyuki Sugano, Akira Sakamaki, Hiroteru Kamimura, Masaaki Takamura, Shuji Terai

Abstract

The dextran sodium sulfate (DSS)-induced colitis mouse model has been widely utilized for human colitis research. While its mechanism involves a response to double-strand deoxyribonucleic acid (DNA) damage, ataxia telangiectasia mutated (Atm)-checkpoint kinase 2 (Chk2) pathway activation related to such response remains unreported. Recently, we reported that cyclin D1-binding protein 1 (Ccndbp1) activates the pathway reflecting DNA damage in its knockout mice. Thus, this study aimed to examine the contribution of Ccndbp1 and the Atm-Chk2 pathway in DSS-induced colitis. We assessed the effect of DSS-induced colitis on colon length, disease activity index, and histological score and on the Atm-Chk2 pathway and the subsequent apoptosis in Ccndbp1-knockout mice. DSS-induced colitis showed distal colon-dominant Atm and Chk2 phosphorylation, increase in TdT-mediated dUTP-biotin nick end labeling and cleaved caspase 3-positive cells, and histological score increase, causing disease activity index elevation and colon length shortening. These changes were significantly ameliorated in Ccndbp1-knockout mice. In conclusion, Ccndbp1 contributed to Atm-Chk2 pathway activation in the DSS-induced colitis mouse model, causing inflammation and apoptosis of mucosal cells in the colon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。