eIF4A Inhibitors Suppress Cell-Cycle Feedback Response and Acquired Resistance to CDK4/6 Inhibition in Cancer

eIF4A 抑制剂抑制细胞周期反馈反应和癌症对 CDK4/6 抑制的获得性抗性

阅读:4
作者:Tim Kong, Yibo Xue, Regina Cencic, Xianbing Zhu, Anie Monast, Zheng Fu, Virginie Pilon, Veena Sangwan, Marie-Christine Guiot, William D Foulkes, John A Porco Jr, Morag Park, Jerry Pelletier, Sidong Huang

Abstract

CDK4/6 inhibitors are FDA-approved drugs for estrogen receptor-positive (ER+) breast cancer and are being evaluated to treat other tumor types, including KRAS-mutant non-small cell lung cancer (NSCLC). However, their clinical utility is often limited by drug resistance. Here, we sought to better understand the resistant mechanisms and help devise potential strategies to overcome this challenge. We show that treatment with CDK4/6 inhibitors in both ER+ breast cancer and KRAS-mutant NSCLC cells induces feedback upregulation of cyclin D1, CDK4, and cyclin E1, mediating drug resistance. We demonstrate that rocaglates, which preferentially target translation of key cell-cycle regulators, effectively suppress this feedback upregulation induced by CDK4/6 inhibition. Consequently, combination treatment of CDK4/6 inhibitor palbociclib with the eukaryotic initiation factor (eIF) 4A inhibitor, CR-1-31-B, is synergistic in suppressing the growth of these cancer cells in vitro and in vivo Furthermore, ER+ breast cancer and KRAS-mutant NSCLC cells that acquired resistance to palbociclib after chronic drug exposure are also highly sensitive to this combination treatment strategy. Our findings reveal a novel strategy using eIF4A inhibitors to suppress cell-cycle feedback response and to overcome resistance to CDK4/6 inhibition in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。