Aneugenic potential of the anticancer drugs melphalan and chlorambucil. The involvement of apoptosis and chromosome segregation regulating proteins

抗癌药物美法仑和苯丁酸氮芥的非整倍性潜力。细胞凋亡和染色体分离调节蛋白的参与

阅读:8
作者:Maria Efthimiou, Georgia Stephanou, Nikos A Demopoulos, Sotiris S Nikolaropoulos

Abstract

Previous findings showed that the anticancer drugs p-N,N-bis(2-chloroethyl) amino-l-phenylalanine (melphalan, MEL) and p-N,N-bis(2-chloroethyl)aminophenylbutyric acid (chlorambucil, CAB) belonging to the nitrogen mustard group, in addition to their clastogenic activity, also exert aneugenic potential, nondisjunction and chromosome delay. Their aneugenic potential is mainly mediated through centrosome defects. To further investigate their aneugenicity we (a) studied whether apoptosis is a mechanism responsible for the elimination of damaged cells generated by MEL and CAB and (b) investigated if proteins that regulate chromosome segregation are involved in the modulation of their aneugenic potential. Apoptosis was studied by Annexin-V/Propidium Iodide staining and fluorescence microscopy. The involvement of apoptosis on the exclusion of cells with genetic damage and centrosome disturbances was analyzed by DAPI staining and immunofluorescence of β- and γ-tubulin in the presence of pan-caspase inhibitor. The expressions of Aurora-A, Aurora-B, survivin and γ-tubulin were studied by western blot. We found that (a) apoptosis is not the mechanism of choice for selectively eliminating cells with supernumerary centrosomes, and (b) the proteins Aurora-A, Aurora-B and survivin are involved in the modulation of MEL and CAB aneugenicity. These findings are important for the understanding of the mechanism responsible for the aneugenic activity of the anticancer drugs melphalan and chlorambucil.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。