Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles

使用变性蛋白质结合介孔二氧化硅纳米粒子克服蛋白质的细胞质输送障碍

阅读:6
作者:Julien Dembélé, Jou-Hsuan Liao, Tsang-Pai Liu, Yi-Ping Chen

Abstract

Intracellular delivery of therapeutic proteins has increased advantages over current small-molecule drugs and gene therapies, especially in therapeutic efficacies for a broad spectrum of diseases. Hence, developing the protein therapeutics approach provides a needed alternative. Here, we designed a mesoporous silica nanoparticle (MSN)-mediated protein delivery approach and demonstrated effective intracellular delivery of the denatured superoxide dismutase (SOD) protein, overcoming the delivery challenges and achieving higher enzymatic activity than native SOD-conjugated MSNs. The denatured SOD-conjugated MSN delivery strategy provides benefits of reduced size and steric hindrance, increased protein flexibility without distorting its secondary structure, exposure of the cell-penetrating peptide transactivator of transcription for enhanced efficient delivery, and a change in the corona protein composition, enabling cytosolic delivery. After delivery, SOD displayed a specific activity around threefold higher than in our previous reports. Furthermore, the in vivo biosafety and therapeutic potential for neuron therapy were evaluated, demonstrating the biocompatibility and the effective antioxidant effect in Neuro-2a cells that protected neurite outgrowth from paraquat-induced reactive oxygen species attack. This study offers an opportunity to realize the druggable possibility of cytosolic proteins using MSNs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。