Functional rare variant in a C/EBPbeta binding site in NINJ2 gene increases the risk of coronary artery disease

NINJ2 基因 C/EBPbeta 结合位点的功能性稀有变异增加了冠状动脉疾病的风险

阅读:4
作者:Pengyun Wang, Yifan Wang, Huixin Peng, Jingjing Wang, Qian Zheng, Pengxia Wang, Jing Wang, Hongfu Zhang, Yufeng Huang, Liang Xiong, Rongfeng Zhang, Yunlong Xia, Qing K Wang, Chengqi Xu

Conclusions

Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.

Methods

We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms.

Objective

NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown.

Results

Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10-3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10-3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10-3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10-5 with an OR of 3.58, P-adj = 3.41 × 10-4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。