Extended indirect calorimetry with isotopic CO2 sensors for prolonged and continuous quantification of exogenous vs. total substrate oxidation in mice

使用同位素 CO2 传感器进行扩展间接量热法,可长期连续地定量小鼠的外源性与总底物氧化

阅读:5
作者:José M S Fernández-Calleja, Lianne M S Bouwman, Hans J M Swarts, Annemarie Oosting, Jaap Keijer, Evert M van Schothorst

Abstract

Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O2 consumption and CO2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13CO2 and 12CO2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13CO2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13CO2 and 12CO2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。